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An Elementary Plate Theory Prediction for 
Strain Energy Release Rate of the 
Constrained Blister Test 

YEH-HUNG LA1 and DAVID A. DILLARD 

Engineering Science and Mechanics Department, Virginia Polytechnic Institute and 
State University, Blacksburg, Virginia 24061, U.S.A. 

(Received October 12, 1988; in final form November 19, 1989) 

A technique based on elementary plate theory is proposed for estimating the strain energy release rate 
of the constrained blister specimen for the case of a relatively stiff blister adherend. The results of 
finite element analysis for an aluminum specimen confirm the applicability of the elementary plate 
theory approach for the constrained blister test. The paper also proposes an experimental scheme 
which could be automated to measure the necessary parameters to determine the strain energy release 
rate of the constrained blister specimen. 

KEY WORDS Blister test; constrained blister test; stress analysis; contact problem; plate theory; 
strain energy release rate; fracture mechanics. 

INTRODUCTION 

Over the years, a large number of test geometries have been devised for 
evaluating the properties of in siru adhesives. Among these tests, the blister 
specimen originally proposed by Williams' offers an attractive approach for 
studying environmental exposure because the diffusion occurs nearly perpendicu- 
lar to the debond, avoiding lateral problems present in double cantilever beam 
type specimens.' Also, because of the axisymmetric nature of the blister 
specimen, the non-uniformity of the stress field along the debond front is much 
less than for a finite width specimen. Anderson, et ~ 1 . ~  discuss closed form and 
numerical solutions for the strain energy release rate for the blister test, and have 
identified regions of applicability for formulae for a penny-shaped crack between 
two semi-infinite media and for elementary plate theory. Gent and 
Lewandowski4 presented an approximate solution for the case of a very thin 
blister adherend in which membrane stiffness is significantly larger than the 
bending stiffness. Allen and Senturia discussed the case of thin films in the blister 
test for annular and rectangular shapes with and without residual s t r e ~ s e s . ~ . ~  
Although these approaches suggest the applicaiblity of the blister test for a wide 
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178 Y. H. LA1 AND D. A. DILLARD 

range of materials and geometries, several problems exist. In the blister test, the 
strain energy release rate is always an increasing function of debond radius, 
resulting in non-stable debonding under constant pressure loading. Furthermore, 
in these approaches, the mode I to mode I1 ratio changes as debond radius 
increases, complicating the analysis of the experimental results. Recently, a novel 
modification of the blister test called the constrained blister test (Figure 1) that 
permits nearly constant strain energy release rate testing of adhesive bonds with 
nearly constant mode mix was proposed independently by Dillard and Chang'.' 
and Napolitano, el d9 By placing a flat constraint above the blister to limit its 
deformation (Figure l), the volume displaced is approximately proportional to 
the debond area. This results in a nearly constant strain energy release rate test. 
An approximate solution of strain energy release rate proposed by Dillard and 
Chang'.' is 

G c  = pchq ( 1 4  
where Gc is the critical value of the strain energy release rate and may be a 
function of debond rate and environment, pc  is the debonding pressure in the 
blister, h is the constraint height, and q is the correction factor. 

If one makes the assumption that the suspended region may be approximated 
by a straight line, q takes on the form: 

where a is the debond radius, and d is the length of the suspended region. 
A series of tests on adhesive tapes showed that a state of nearly constant G was 

obtained."' Numerical analyses by Lai and Dillard'" confirmed the applicability 
of the approximate solution, Eq. ( l ) ,  for several typical cases. The numerical 
analyses also suggested that the measurements of the length of the suspended 
region, d ,  and debond radius, a, are always required in order to determine 
accurately the correction factor, q and, therefore, G. For thin films or soft 
specimens, a and d can be easily measured by taking pictures through a 
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FIGURE 1 Configuration of the constrained blister test. 
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CONSTRAINED BLISTER TEST 179 

transparent upper constraint. However, in tests with a stiff specimen such as 
aluminum, high pressure is required and a rigid opaque constraint such as thick 
aluminum or steel is needed. In these cases, values of a and d cannot be readily 
obtained. Thus, an alternate technique that can predict strain energy release rate 
without measuring a and d is developed, and can be used in lieu of the numerical 
analysis’o for obtaining the total strain energy release rate. 

THE APPLICATION OF ELEMENTARY PLATE THEORY TO PREDICT STRAIN 
ENERGY RELEASE RATE 

Several energy balance formalisms have been proposed for determining strain 
energy release rates for adhesive bonds. The approach used here is based on the 
classical energy conservation approach where localized viscoelastic and plastic 
deformations in the vicinity of the crack tip are included in the critical strain 
energy release rate, G, = G,(da/dt) ,  making it a function of debond rate. The 
choice to include this near-field energy dissipation in the G, term provides 
expediency, and has been discussed by Knauss,” Williams,’* and used by 
Anderson, et aL3 and This is a reasonable approach since near-field 
dissipation cannot readily be separated from an “inherent” surface energy 
anyway. When debonding occurs, 

G, 6A = 6W - 6U - 62 (2) 
where G, is the critical value of strain energy release rate and may be a function 
of debond rate and environment, 6A is the variation of the debond area, 6W is 
the variation in work done on the system, 6U is the variation of the strain energy 
of the specimen, and 62 is the variation of the energy dissipated in the region 
away from the vicinity of the debond tip, which may include viscoelastic, 
frictional effects, and plastic dissipation. 

In the constrained blister test with an elastic specimen, one may neglect the 
energy dissipation due to  far-field viscoelastic effects. In the test, one may also 
view the specimen as a thin, flat, circular plate subjected to small deformations, 
which is the case for a relatively stiff specimen constrained to a small constraint 
height. Thus, the displacement in the radial direction is negligible and one may 
neglect the slipping and the dissipated frictional energy between the specimen and 
the upper constraint. (Numerical results also confirm that even if frictional 
slipping occurs against the constraint, the effect on the energy balance is 
negligible.”) Furthermore, if the plastic zone is small compared with the crack 
length and is localized to the crack tip, which is shown in Ref. 10 for an 
aluminum specimen, one can neglect the dissipated plastic energy. Under the 
above conditions, the 62 term in Eq. (2) can be neglected. The strain energy 
release rate, G, will be expressed as energy released due to. the variation of the 
debond area and is given by: 

av au G = p - - - -  
dA dA (3) 
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180 Y. H. LA1 AND D. A. DILLARD 

where V is the volume of the blister, and p is the pressure. 
Although assumed negligible in earlier the variation in strain 

energy is retained in the present analysis, although only bending strain energy is 
considered in the following closed form analysis. 

If the thickness of the specimen is small in comparison with its radius (t I fa) 
and the deflection is small compared with its thickness (w S t), elementary plate 
theory can be used and the deflection is given 

Pr4 w(r)  = C1 + C2 In r + C3r2 + C4r2 In r + - 
6440 (4) 

where w(r)  is the deflection of the mid surface of plate at any radial position, r, 
C1, C,, C3 and C4 are undetermined constants, p is the uniformly distributed 
pressure and D is the bending rigidity which is given as 

Et3 
D =  

12(1- v’) ’ 
where t is the thickness of the specimen, E is the Young’s modulus, and v is the 
Poisson’s ratio. 

In the case of a constrained blister, we assume that the edge of the blister is 
clamped. In order to determine the four unknown constants and the unknown 
radius of the inner edge of suspended region, b, two boundary conditions are 
applied at the debond radius, a:15 

( w ) r = a  = 0, ( 5 4  

and three at the inner edge of suspended region of radius b:  

( M ) r = b  = 0, (5e) 
where the last boundary conditon, Eq. (5e), is based on the assumption that just 
inside the circle of radius b the slope is zero, therefore, the bending moment must 
also be zero along this circle, since the inner portion of the plate remains flat. 

Thus, a system of five nonlinear equations is obtained to determine the 
unknown constants and b: 

Pa4 C1 + C2 h a  + C3aZ + C4a2 In a = -- 640 

Pb4 C1 + C2 In 6 + C3b2 + C4b21n b = - - + h 640 
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CONSTRAINED BLISTER TEST 

C2 - 1 + C3(2u) + C4a(2 In a + 1) = - - Pa3 
a 160 

C2-+C3(2b)+C4b(21nb 1 +1)= -- Pb3 
b 160 

v - 1  Pb2 C2- + 2C3(v + 1) + C.43 + 2 In b + 2v In b + v) = -- (3 + v) 
b2 160 

From Ref. 11, the strain energy due to bending can be expressed as: 

and the volume of the blister is 

Theoretically, by substituting Eq. (4) into Eq. (7) and Eq. (8), differentiating U 
and V with respect to A and then substituting into Eq. (3), we can obtain the 
strain energy release rate, G. However, Eq. (6) is a system of nonlinear 
equations; obtaining the solutions in explicit form for the unknown constants and 
b is impractical. Consequently, calculating the strain energy release rate 
numerically is a more practical approach. Fortunately, the numerical library to 
solve a system of nonlinear equations and do  numerical integration is easy to 
obtain for either a personal or main frame computer. 

In the current study, Eq. (6) is solved by using the IMSL” subroutine 
ZSPOW; the bending strain energy, U, and the volume of blister, V, are 
integrated using subroutine DCADRE. By imposing a small variation Sa on 
debond radius, the quantities SV, SA and SU are readily obtained. Substituting 
these quantities into Eq. (3), we can then obtain the strain energy release rate 
numerically. 

In the following section, the predictions of strain energy release rate based on 
the above algorithm will be compared with finite element predictions for 
aluminum adherend ‘cases. A simple experimental procedure will also be 
proposed to  predict the strain energy release rate by using this algorithm. The 
analysis of the constrained blister test based on this algorithm will also be 
compared with the regular blister test to clarify their differences. 

RESULTS AND DISCUSSIONS 

Figures 2 to 5 are the predictions of the plate theory compared with those of 
finite element analysis with the geometrically nonlinear option for an aluminum 
6061-T6 specimen which has a thickness of 3 mm, a constraint height of 2 mm, 
and is subjected to a pressure of 200kPa. The finite element program called 
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FIGURE 2 Profiles of an aluminum specimen for the analyses of FEM and plate theory. 

ABAQUS, which is capable of handling contact problems, was used (version 
4-7-1). In these figures, the legends denoted ‘FEM’ and ‘PLATE’, represent the 
predictions of finite element analysis and elementary plate solution, respectively. 

Figure 2 illustrates a typical deformed profile at the midplane of the specimen 
for an aluminum specimen of a = 200 mm. Excellent agreement is seen between 
the predictions of the geometrically nonlinear finite element analysis and 
elementary plate theory. It should be noted that according to Ref. 15, if there 
were no upper constraint, the deflection of a plate of the same geometry 
subjected to this loading condition would be so large that the problem would 
need to be treated as a large deformation plate problem and the deviation of 
deflection at the center from elementary plate theory with respect to that from an 
approximate solution of large deflection plate theory would be around 400%. The 
excellent agreement in Figure 2 shows that the upper constraint has prevented 
membrane effects from significantly stiffening the plate. The elementary plate 
theory solution which ignores membrane effects agrees very well with the finite 
element solution which accounted for geometric nonlinearities. 

Figure 3 illustrates the stress distribution in the radial direction at both the top 
and bottom surface of the specimen. It should be noted that the stress 
distributions from both elementary plate theory and finite element analysis do  
not exceed the yielding point except for the region very near the crack front 
which has a singular point (plastic zone is about 0.05% of the thickness). It is 
seen that the stresses from the elementary plate theory are higher than those of 
the finite element analysis in the suspended region. In the contact region, 
however, the stresses from the elementary plate theory are smaller. The reason 
for the former phenomenon is due to the assumption that the outer edge is fixed 
at r = a in the elementary plate approach, which provides a stiffer constraint than 
exists in the real specimen analyzed in the finite element model, and thus causes 
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Constrained Aluminum Blister 
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FIGURE 3 Radial stress distributions predicted by FEM and plate theory along the top and bottom 
surfaces in the radial direction of an aluminum specimen. 

higher bending moment and stresses. The reason for the latter phenomenon is 
due to the assumption of the small deformation for the elementary plate theory 
which results in zero stresses at the mid-plane of the specimen, where the finite 
element analysis shows non-zero membrane stresses. Although the predicted 
stresses deviate substantially, it will be shown that the stored energy is small in 
comparison to input work, thereby minimizing errors in predicted strain energy 
release rates. 

Although the finite element results did not show an oscillation of 
displacements near r = 6 ,  a small oscillation of the stress distribution in the r 
direction, a,,, did reveal that very localized oscillation occurs.1o However, the 
excellent agreement of the displacement profile suggests that (M),+ = 0 is a good 
assumption as well as the fixed end assumption at r = a. 

Figure 4 illustrates the volume of the blister versus debond radius. Excellent 
agreement is seen. For a < 102 mm, the elementary plate solution indicates that 
the specimen does not touch the upper constraint and suggests that initial debond 
radius in the constrained blister test should be larger than 102 mm. 

Figure 5 illustrates the strain energy release rates versus a, using the results 
from the finite element analysis, approximate solution, Eq. (la), and elementary 
plate theory. The variation of input work on the system and the variation of strain 
energy from Eq. (3), based on elementary plate theory, are also shown in the 
figure to indicate the relative magnitude of the bending strain energy. The 
legends, ‘G-PLATE’, ‘G = phq’, and ‘FEM’, represent the energy release rates 
obtained from the elementary plate theory, approximate solution by Dillard, et 
~ 1 . ~ 3 ~  and the finite element analysis, respectively. The other two legends, 
‘dW/dA-PLATE’ and ‘dl//dA-PLATE’, represent the variation of the work on 
the system and the variation of the strain energy of the specimen from the 
elementary plate thoery, respectively. The calculations were performed at a strain 
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FIGURE 4 Volume of the blister uems debond radius predicted by FEM and plate theory for an 
aluminum specimen. 

energy release rate which is typical for aluminum epoxy b ~ n d i n g . ~  Two paths 
were considered for the finite element analysis. One is the path whereby the 
specimen is lifted to contact the upper constraint by the applied pressure; the 
other path is for the blister first unconstrained and then the rigid upper constraint 
moved down until the final configuration is the same. In both analyses, the 
coefficient of friction varies from 0 to 0.5. It was found that the difference 
between the paths is less than O S % ,  for all cases, which suggests that the contact 
condition does not induce large error for the energy balance equation, Eq. (2). It 
is noted that the strain energy release rates from the elementary plate theory are 

FIGURE 5 Strain energy release rates uersus debond radius for an aluminum specimen. 
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CONSTRAINED BLISTER TEST 185 

smaller than the FEM predictions. The difference appears to arise because the 
analytical solution predicts higher stresses, as shown in Fig. 3, and thus, variation 
in strain energy, dUIaA, than the FEM results. However, in Ref. 8, it was shown 
that the variation of the strain energy is only a small fraction of the variation of 
the input work. Thus, the error from the stress prediction does not induce a large 
error when the total strain energy release rate is calculated, because the first term 
on the right hand side of Eq. (3), p(aVIdA)(  = dW/3A) ,  is the dominant term 
and is shown to be very accurate from the volume prediction from the elementary 
plate theory in Fig. 4. It is also seen in this figure that the approximate solution, 
G =phq, is a good approach if one can obtain the debond radius and the length 
of the suspended region, which are obtained from the finite element results in the 
current comparisons. All three approaches show that the rate of increase of C 
decreases as debonding proceeds, and a nearly constant G is seen at large values 
of debond radius. 

Figures 4 and 5 also offer us an efficient way to predict the debond radius and 
the strain energy release rate in a constrained blister test. The prediction 
procedures are illustrated in Fig. 6 and stated as follows: First of all, use the 
algorithm developed in the previous section to run several cases for different 
parameters such as p ,  h, t ,  and a for the selected specimen geometries to 
determine the conditions for the existence of contact between the specimen and 
upper constraint. Secondly, run several cases with different a's to obtain the 

CenstrucUnp f iquas for 

Pedaninp 8xprirnant 

FIGURE 6 The automated algorithm to determine G. 
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186 Y. H. LA1 AND D. A.  DILLARD 

figures of “volume us a” and “G us a”. Thirdly, perform the experiment with the 
initial debond size predicted from step 1 and measure the blister volume. Finally, 
from the figure of “volume us a”, one can determine the debond size and refer to 
the figure of “G us a” to  obtain the G for the specific a’s. Using these 
procedures, the strain energy release rate is easily determined and automated 
evaluation is possible. 

Although the theoretical background of the current approach is confined to 
small deformation plate theory, it is reasonable that if the loading condition and 
specimen geometry result in a small length for the suspended region, the error for 
volume predictions between elementary plate approach and nonlinear finite 
element analysis would be small even for the constraint height larger than the 
blister thickness. Since the variation of input work is the dominant term 
determining the strain energy release rate,* the error induced from the increasing 
membrane strain energy may be still relatively small when determining the total 
strain energy release rate. Because a nondimensionalized and explicit form 
solution of the constrained blister test could not be obtained in the current study, 
the complete criterion of the applicability of the elementary plate theory for the 
constrained blister test could not be established. However, by increasing the 
constrained height, h, beyond the limitation of the small deformation plate 
theory, one can obtain a greater understanding of the limitations of the proposed 
approach. Figure 7 illustrates the strain energy release rate versus constraint 
height for both geometrically nonlinear finite element analysis and the elementary 
plate approach for the same aluminum specimen analyzed previously. The 
applied pressure is 1 MPa. It is seen that the prediction of G from plate theory 
has only 5.3% deviation even for an h which is four times the adherend thickness. 
It should be noted that at h = 5t for this geometry, the specimen does not touch 

1 P = lMPo ’ FEM 
a = 200mm 

I 1 I 

4 6 8 10 
CONSTRAINT HEIGHT, h (mm) 

2 

FIGURE 7 Strain energy release rates Versus constraint height predicted by FEM and plate theory 
for an aluminum specimen. 
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CONSTRAINED BLISTER TEST 187 

the upper constraint, thus no further comparison is shown in the figure. It is also 
seen that the rate of change of C obtained from FEM predictions decreases as h 
increases, while that from plate theory does not. This suggests that the membrane 
effect increases as h increases and larger deviation is expected for h > 4t. 

Although Figure 7 shows that the strain energy release rate is still accurate 
when h is four times the thickness, the predictions of the blister volume are not as 
accurate as those of strain energy release rate. Figure 8 shows the volume of the 
blister versus the constraint height. It is seen that the accuracy of volume 
prediction decreases as h increases, which is due to the increase of the membrane 
effect considered by the FEM analysis. As h = 3t ,  the deviation of the volume 
prediction from the plate theory is about 12% from the FEM analysis. It is noted 
that the strain energy release rate predictions have higher accuracy than volume 
predictions. The phenomenon can be explained in that even though the accuracy 
of the volume predictions decrease for larger h, the variations of the volume are 
about the same from the elementary plate and FEM predictions under a small 
increment of debond radius, 6a, and thus results in better prediction for the 
variation of input work and the strain energy release rate. 

Figure 9 illustrates the variation of the strain energy release rate based on plate 
theory as the debond grows for the same aluminum specimen as in Figs 2-5. The 
variations of work input on the system and strain energy as the debond grows are 
also illustrated. The results from the regular blister test and constrained blister 
test are noted as '-BT' and '-CBT' in the figure. When a is smaller than 
102 mm, the deflection at the center of the plate calculated from elementary plate 
theory: " 
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FIGURE 8 Volume of the blister uersu constraint height predicted by FEM and plate theory for an 
aluminum specimen. 
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188 Y. H. LA1 AND D. A. DILLARD 

h 

” 400 
E 
3 350 

1 b t ’ dW/dA- CBT 
dU/dA-CBT 

0 

t 
w 500 

250 
W 
v) 

-I 
8 20c 

k! 150 
0 

z 
W 

100 

50 

t o  
f 

Constrained Aluminum Blister 

20 40 60 80 100 120 140 160 180 200 
DEBOND RADIIJS. a (mm) 

FIGURE 9 Illustration for the variation of G during the debonding process for a constrained blister 
test with a regular blister as a is smaller than lor! mm. 

is smaller than the constraint height, and the radius of the contact region, b,  
calculated from Eq. (6) is smaller than 0. Both results show that the specimen 
does not touch the upper constraint. On the other hand, for a > 102 mm, both 
results indicate that the specimen contacts the upper constraint. Thus, for 
a < 102 mm, the specimen is a regular blister and the strain energy release rate is 
calculated from Eq. (4) which has 

au 1 av 

and thus:” 
3 (1 - v”) 

G = - -  p2a4. 
32 E? 

It is clearly seen that for a < 102 mm, G is a function of a4 and small errors of 
measuring debond radius would cause large errors in G. For a > 102 mm, the 
specimen becomes a constrained blister and G is calculated from the approach 
proposed in the previous section. It is seen that small errors in measuring or 
estimating debond radius would not induce the large errors in G as would the 
regular blister test. It is also seen that the variation of the strain energy term in 
Eq. (4) is more important in the regular blister approach, while it is less 
important in the constrained blister approach. This is discussed in some detail in 
Ref. 8. 

CONCLUSIONS 

An approach based on elementary plate theory to evalutate the strain energy 
release rate in the constrained blister test is proposed in this paper. This approach 
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CONSTRAINED BLISTER TEST 189 

is especially applicable for relatively stiff blister specimens, such as metallic 
specimens, which would cause difficulty determining the debond radius and 
contact region by observing through the transparent upper constraint in the test. 
The strain energy release rates predicted from this approach are in good 
agreement with those predicted from the finite element analysis and the 
previously-proposed approximate solution. In contrast to the rapid increase of the 
strain energy release rate predicted by the free blister test, a nearly constant 
strain energy release rate during the debonding process is predicted from this 
approach. Although elementary plate theory is applicable for the maximum 
deflection smaller than the thickness of the plate, the results of an aluminum 
specimen suggest that under the appropriate loading and geometrical conditions, 
the proposed approach is applicable for cases with the constraint height larger 
than the specimen thickness. 

In the experimental scheme of the constrained blister test proposed in this 
paper, only the volume and the pressure difference between the inside and 
outside of the blister need to be measured during the debonding process. The 
measurements are easy to perform and may be automated. Thus, this approach 
offers a practical and efficient way to estimate strain energy release rate for 
metal adherends and suggests wider applicability of the constrained blister 
technique. 
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